Error Control Based Model Reduction for Multiscale Problems

نویسندگان

  • MARIO OHLBERGER
  • M. OHLBERGER
چکیده

In this contribution we review a posteriori based discretization methods for variational multiscale problems and suggest a suitable conceptual approach for an efficient numerical treatment of parametrized variational multiscale problems where the parameters are either chosen from a low dimensional parameter space or consists of parameter functions from some compact low dimensional manifold that is embedded in some high dimensional or even infinite dimensional function space. The approach is based on combinations of ideas from established numerical multiscale methods and efficient model reduction approaches such as the reduced basis method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Control Based Model Reduction for Parameter Optimization of Elliptic Homogenization Problems

In this work we are considered with parameter optimization of elliptic multiscale problems with macroscopic optimization functionals and microscopic material design parameters. An efficient approximation is obtained by the reduced basis approach. A posteriori error estimates for the reduced forward problem are obtained in the periodic homogenization setting, using the so called two scale weak f...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory

A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...

متن کامل

Numerical homogenization and model order reduction for multiscale inverse problems

A new numerical method based on numerical homogenization and model order reduction is introduced for the solution of multiscale inverse problems. We consider a class of elliptic problems with highly oscillatory tensors that varies on a microscopic scale. We assume that the micro structure is known and seek to recover a macroscopic scalar parametrization of the microscale tensor (e.g. volume fra...

متن کامل

A Multiscale Model Reduction Method for Partial Differential Equations

We propose a multiscale model reduction method for partial differential equations. The main purpose of this method is to derive an effective equation for multiscale problems without scale separation. An essential ingredient of our method is to decompose the harmonic coordinates into a smooth part and a highly oscillatory part so that the smooth part is invertible and the highly oscillatory part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012